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THE COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH HEAT TRANSFER AND ARBITRARY
~ PRESSURE GRADIENT ~ ~
By CLABENCEB. COHENand ELI RESHOTKO

SUMMARY

An approximate method for the calcd@h of the com-
preeeibh Lzminar boundary layer WW heat tramjer and
arbiirary pnwwwe gradient, based on Thwaite# ixmela.tion
concept, is prwxu%xi?. 17wmethodr&fiom t?wapplicdion
oj Stewartwn’8 tramjormu$wn to PrandiJ’8 equatti, which
yiti a nonlinear 8et of twojirst-order dijereniial eguutione.
These equztiO?Mare then mprtxsed in i!mrw of dimm”onkx8
parameters re+?a.?edto the waUshear, the wqface heat trarwfer,
and the transfornud free+treum velocity. l%waii%x’ concept
of the unique interdependence of i’.haeparametem is resumed.
The evai?uutionof theseqwantitia ti then c5rri.edout by utilizing
e.ixzet8olu&n43recerh?Lyobtained.

WW the rwulting rWw, methods are derived for the
culcddbn of the twodimcnsiond and dy ~meti
laminur bowndary luyer with arbitrary free-dream veikity
distribution, Mach number, and .suqfaw temperature level.

The combinid efect of hat tramfer and premu.regmdient
G demowtmted by applying the method to cuku.?utethe char-
actmktizs of the bowndai-ylayer on thin euper80nic w.rfaces
and in a highly cooled, conwrgentdwergent, axially 8ymmetric
rockel nazzle.

INTRODUCTION

In recent years, with the advent of laminar airfoils and
with the observation of laminar boundary layem at Reynolds
nurnbera as high as 50x 10e (ref. 2), the ability to reliably
estimate viscous flow and heat-transfer eilects for a laminar
boundary layer has become increasingly important. More-
over, with high-altitude Ilight becmning more common, the
subsequent lower Reynolds numbers encountered shouId
mom frequently produce a laminar boundary layer. Sta-
bility calculations based on the theory of Lees and Lin
(ref. 3) have also emphasized the possibilities of maintaining
a knimr boundary layer through cooling of aerodynamic
surfacea. The effect of favorable pressure gradients in
increasing the stability of laminar” boundary layem may
also make solutions to the laminar problem applicable to
the design of nozzlea and turbine bladea.

Solutions of the laminar-boundary-layer equations that,
include effectw of compressibility, pressure gradient, and
knt tmmsfer have been quite limited in number. Of the
exact solutions, most have restrictions of range or applica-
tion, or both. The solutions of references 4 and 5 are re-

stricted to zero pressure gradient, while those of reference 6
allow small pressure gradients. The developments of refer-
ence 7 are restricted to small heat transfer and low Mach
number. Solutions obtained by a.swming that fluid proper-
ties are constant or that the Mach number is essentially zero
are obtained in references 8 to 10. Those solutions of
references 11 to 13 that are for a Prandtl number of 1 are
not restricted in range of compressibility, pressure gradient,
or heat transfer. However, they apply to specific types of
free-stream velocity distribution that are inappropriate for
general practical problems.

In 1921, von K4.rD.16n(ref. 14) recognized that to solve the
skin-friction problem it was not necessary to have the exact
and complicated solution, but that it would be quite satis-
factory tQ evaluate average quantities across the layer if
they cmdd be related to the surface values. The concepts
of displawumnt and momentum thicknesses were introduced,
thus considerably simplifying the mathematics of the prob-
lem. With this integral method, if the form of the veloci~
protile is related to a single parameter, a method of ealcula~
kg the boundary layer is obtained. Pohlhausen (ref. 15)
carried out this method by postulating a quartic velocity
profile depending upon the local pressure gradient. A num-
ber of investigators have extended Pohlhausen’s method to
eompresible flows over insulated surfaces.

With the pres.enee of heat transfer at the aurfaee, the eom-
prmsible problem becomes more complex. IGdikhman (ref.
16) defined certain hea&flow quantities analogous to the
displacement and momentum thickneasea and, in a manner
simikr ta Pohlhausen’s, developed a complex iterative
procedure for th~ solution of the general problem. More
reeently, refereneea 17 to 20 have further developed this
technique. The preceding methods are tedious, since they
require a solution of at least one ordinary di&rentisJ equa-
tion for any particular problem.

Thwaitea’ method (ref. 21) do&s not require the solution of
ordinary diilerential equations. In that formulation, it is
suggeakd that the basic goal of an integral approach might
be achieved if the problem is considered ~ that of relating
the wall shear, its normal derivative at the wall, and the
form factor (ratio of displacement thickness) to one another
without specifying a type of profile. To this end, nondimension-
al forms of these quantities were deiined and were evaluated
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by examinin g exact solutions for the incompr-ible lamiuar
boundmy layer. It developed that a nearly universal
relation existed between these quantities for favorable
pressure gradients, and for adverse pressure gradients
Thwaites selected a single representative relation. A unique
correlation wrw chosen that reduced the solution of an incom-
pressible problem to the evaluation of a single integral?

Rott and Crabtree (ref. 23) recognized that, in the absence
of bent transfer and with a Prandtl number of 1, the Illing-
worth-stewartson correlation between compressible and
incompressible boundary-layer solutions (ref. 24) could be
used to extend Thwaites’ method to include effects of
compressibility.

TVM the presence of heat transfer the application of
Stewartson’s transformation does not correlate a given com-
pressible problem to an equivalent incompressible one.
Thus, the universal relation previously described is not
adequate. Unfortunately, there is little possibili~ of
establishing a family of universal relations with, for example,
the wall temperature as the distinguishing parameter, since a
variety of exact solutions to this problem is not available.
However, one such set of relations maybe obtained from the
solutions of reference9 11 to 13.

Iu the present paper, after formulation of a nonlhiear
system of two first-order differential equations (with the
major restriction being a linear viscosi@- law), methods of
solution are developed depending on Thwaites’ concept of
universal functions. The functions used for this purpose
are evaluated from the solutions of reference 12 only.

BOUNDARY-LAYER EQUATIONS

The equations of the steady, two-dimensional compressible
Inmiuax boundary layer for perfect fluids are
Continuity:

: (w)+$(@)=o (1)

Momentum:

(All symbols are defied in appendix A.)
The viscosity law to be assumed is

(4)

Equation (4) is of the form taken by Chapman and Rubesin
(ref. 5), except that the reference conditions (~, h) are fiee-
stream stagnation value9, since, in the case of pressure
gradient, the local stream values are not constant along the

JOtherapprrmchq such as that of Ycumg and Wfntertmttom (ref. 22), have msrdtwl fn
expwssions for the mamentnm thfclmss slmllar to that of Thwaft6s. In that anabrds,
houwver, the derivation was a mdllmtlon of the Pohlhansm technlqne. The applkation
of a correlation concept was not PWXE3@.

flow. The constant k is used to match the viscosity with
the Sutherland value at a desired location. If this location
is assumed to be the surface, the result is

(6)

where
k,u=Sutherlrmd’s constant= 198.6° R (for air)

Stewartson’s transformation.-The velocities in tho equo-
tions of motion (1) to (3) can be replaced through tho
definition of a stream function:

(6)

Introducing the quantity k from equation (4), a slight modi-
fication of Stewartson’s transfo~ation (ref. 24) may bo
written:

(7)

The transformed coordinates are now represented by upper-
case letters (X, Y), and the subscript e refers to 10CO1con-
ditions at the outer edge of the boundary layer (external).
The subscript O refers to free-stream stagnation values.

Applying equations (4) to (7) to the boundary-luyor
equations (1) to (3) and asauming that Pr and Cpare constant
(but not yet requiring that Pr=l) result in the following
system:

U.+vy=o (8)

-m7.+vuy= U,u,x(l+5’)+V(IU,}- (9)

.sx+vsy=vo{%-%(,~
(lo)

where the enthalpy term S’ is defined for convenience as

(11)

where h, is the local stagnation enthalpy. The strewm
function has been replaced by the transformed velocities
(U, V) through the relations

‘17+y

v= –*.
(12)

The resulting relation between the transformed and physical

longitudinal velocitie9 is U=: u.
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The boundary conditions applicable to the system (8) to
(10) for a specified wall temperature are

U(x,o)=o
V(x,o)=o

1

S(x,o)=isu(x)

/

(13)
linlf=o

linly=u.(x) J

Integral equations,-An alterna~e form of the momentum
equation m~y be obtained by subtracting the momentum
equation (9) from the product of the continuity equation
(8) and the quantity (U.– U). This results in

\

[U(U.–U)]X+[V(U6–U)].+u.x(u.–u)+
U’UJ3= –V,u,. (14)

If equdion (14) is integrated with respect to Y between the
limits Y=O rmd Y=A, where A is a constant distance normal
to the surface suiliciently large that the conditions S= O
rmd U= U, can both be satisfied, there results

#x(fltru3+u8u8x~?r=~o(uP)P.o (15)

where the @ansformed momentum thickness d~r and the
transformed displacement thiclmess @, are defined as

‘A3%i-o-

“-r(++’)~ }

(16)

By carrying out the indicated differentiation, equation (15
crm be put in the form

(17)

This equation has the form of the conventional K#mnfm mo-
mentum integral.

It should be noted that because of Stewartson’s trans-
formation a simple relation exists between the parameter
0,, and the actual physical momentum thicknees O. This
relation is

( )–

to 2(T–\)
g=fi % Ig’,=otr ~

i% QQ
(18)

Following a procedure with the energy equation similar to
that for the momentum equation results in

(19)

Where the convection thickness is deiined by

J
E= :S&b Y (20)

e
43 G87M7—02

The method presented in this report uses exact solutions
to the boundary-layer equations including the energy equa-
tion. Since both the skin-h-iction and heat-transfer param-
eters from the exact solutions are correlated with a parameter
which is evaluated horn only the momentum integral equa-
tion, it will not be necessary to use equations (19) and (2o).

REDUCED BOUNDARY-LAYER EQUATIONS

At this stage, the relation governing the boundary-layer
development is equation (17), subject to the boundary condi-
tions (13ti)..0=0 or (13(,)_, where the subscript gp indicates
stagnation-point values. The former condition on 8,, applies
when the boundary layer is initiated without a stagnation
point (such as in the case of a supersonic thin airfoil). The
value of (0~,),P depends on the value of (Um) ,P and on the
surface temperature. At a stagnation point, (L9J,P=0,P.
Values of O,Pare presented in table I.

Before consideration of a solution that depends on a cor-
relation similar to that of Thwaites, it is expedient to trans-
form the preceding system of equations to a system involving
dimensionlew parameters. The correlation concept will
then be introduced and methods of solution developed.

P.4RAMmFUCFORM

The dimensionless parameters, which are related to terms
appearing in equations (17) and (19), can be deiined and
evaluated horn the following expressiomx
Shear parameter, or fit-derivative parameter,

‘“%3.=%2 (21)

&rrelation number (related to pressure gradient), or second-
derivative parameter,

Heat-tmmsfer parameter, or thirdderivative parameter,

““lHa+i$/(i)lm
(23)

In definitions (22) and (23), use is made of the following
relations, respectively:

a’v) U.u.x

a~ .
=–— (1+s.)

Vo

which is obtained from equation (9), and

(25)

which is obtained by diilerentiating equation (9) with respect
to Y and evaluating the resulting expression at Y=O.

24LU.,mere r=dta
If equation (17) is multiplied by ~

where H~,=~ is the form factor for low-speed flow (M, s O).
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TABLE I.—INITIAL VALUES OF PARAMETERS
(8) stagn8tian-wIllt flow
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Now, if definitions (21) and (22) are inserted, equation (26)
bccomea

dn

()
— =2[n(H.+2)+1]

‘u’ n u.=
(27)

A similar procedure can be carried out with the energy
equation, although it is not necessary for the calculation
method herein presented.

CORRELATIONm TRRMSOFn

If, in the definition of 13%(eq. (16)), iS is set equal to zero,
the form factor then becomes the same aa that of Tlmvaitea
and equation (26) becomes Thwaitea’ momentum equation.
If, in this case, physically valid relations H.(n) and l(n)
em be established, the equation can be integrated and the
problom is solved. The assumption of the form of the veloc-
ity profile serves this purpose, and the resultant procedme is
tho well-know Pohlhausen technique. (Glikknan (ref.
16) was the fit to carry the same approach over to the case
of the thermal profile.) Thwaites used the more direct ap-
proach by determining whether universal relations H,,(n)
rmd i(n) could possibly be established from the well-lmown
exact solutions of the boundary-layer problem. An exami-
nation of these solutions proved that for favorable pressure
gradients a single relation for each of these quantities could
be established with a fair degree of accuracy, but for adverse
pressure gradients the relations departed horn each other
considerably, aa indicated for l(n) in figure 1 (taken horn

.4
,--t!artree (ret 26

4.‘,–l+worth (ref.2 )

u/1).2

Fowobl Mverse
— pEw_Kye—

\
—w&J$– +

$2
~ \

-.C% -04 0 C4 C@ .12
n

FmunD I.-skin-friction correlation of Thwaiti (ref. 21) for inoom-
premible flow over an insulated surface.

ref. 21). Since the correlation technique requires the selec-
tion of a single relation between all boundsry-layer quanti-
ties regardless of the history of the development of the spe-
cific boundary layer under consideration, the assumption of
a single relation for all boundary layers is not exactly valid.
Thwaites chose a relation for l(n) that would match the

“ Howrmth solution (ref. 25) at separation. The Pohlhausen
solution predicts separation to occur much later than any
of the other solutions in the sketch, while the Hartree solu-
tion (ref. 26) predicts separation to occur earlier than the
Howrwth solution. Stewartson (ref. 24) has indicated that
under certain conditions Howarti’s solution would predict
separation too late.

With the exception of the described ditlerences in the
relation between boundary-layer quantities (due to the
eelection of the solutions of ref. 12 for the evaluation of the
correlated quantities), the method of correlation to be
presented herein will contain as special cases the method of
Thwaites for incompressible flo-iv and the remdts of Rott
and Gabtree for compressible flow over insulated surfaces.

The concept of correlation is herein extended by the
following major assumption: For the compressible laminar
boundary layer with heat transfer across the surface, the
skin-fiction and heat-transfer parameters 1 and r can be
correlated only in terms of the parameters n and Sw, derived
from the exact solutions of reference 12.

It is thus implied that the solutions of reference 12
adequately represent the general boundary layer, although
they were derived for FalkuerSmn type ”flow.

As in all fit-order boundary-layer theories, the pressure
distribution (and consequently the external velocity dis-
tribution) is assumed to be known. Then the utility of the
cmm.lation may be stated as follows If n is known at a
given point on the surface, 0,, (and hence 0) oan immediately
be obtained from equation (22). If l(n) is a known function
for the specified wall temperature, the wall shear is im
mediately obtainable from equation (21). Similarly, if
r(n) is known, the heat transfer can be found horn equation
(23).

If the postulate of correlation in terms of n and Se is
admitted, equation (27) becomes

dn (-)‘U*z U.x ‘N(’@”) (28)

where
N(n,SJ=2[n(H.+-2) -l-z] (29)

This is the fundamental equation of the present method.
Its solution, resulting in a determination of n(z), is the &st
stage in solving for the boundary-layer characteristics.
Then the function l(n,SJ is used to determine the wall
shear, and the function r(n,SJ is used to determine the
heat transfer.

EVALUA’ITON OF CORRELATION PARAMKTRRS

The quantities 1, n, and r defied in equations (21) to
(23), as evaluated horn the solutions of reference 12, are
listed in table II. An alternate parameter to r for the de-
termination of the heat transfer is the Reynolds analogy

CjRe
parameter, defined as ~% relating the heat transfer to

the skin friction. Because this (arbitrarily chosen) parameter
is herein determin ed from solutions for a Prandtl number of

C~Reu
()

1.0, it will be denoted —
Nu pr.1

as it appears in table

H.. It is related to r by

CIRew
()

2/3#J
Nu ~.l=— T

CrRem
()

The parameters 1 and —
Nu pr.l as

(30)

functions of n

and S= are plotted against n in figures 2 and 3, respectively.
The solid portions of the curves represent the solutions of
reference 12. The reversal of the curves for SW= 1.0 is
associated with the velocity overshoot phenomenon discussed
in reference 12.
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-.44 -.40 -36 -.32 -28 -.24 -.20 -.16 -J2 -.08 -04 0 .04 .08 .12 .16 .20
Carrebtbn numbw,n I

FIGURE 2.—Correlation of Shear parameter.

) .04 .08 .12 .16 .20

FIGURE3.—Correlation of Reynolds analogy parameter.



COMPRESSIBIX LAMJNAR BOUNDARY LAYER WITH HEAT TRANSFER AND ARBITRARY PRESSURE GRADIENT 963

METHOD OF SOLUTION

The solution of equation (28) obviously depends on a
knowledge of the term N(@J. This quantity was evalu-
ated from equation (29) and the associated formulas for
1,n, and H,r. The results are shown in figure 4. It is to be
noted that the curve for Sw= O is nearly a straight line, and
for tdl negative values of Sw the curves depart only slightly
from this condition except in the range near separation
where the curves become double-valued. For S.>0 (hot
wall) tho curve is essentially straight except in the region of
strong favorable gradients.

Tho examination of these curves and of equation (28)
suggests two methods of determining the correlation number
n, The first method is that of solving equation (28) by
numerical integration. The necessary numerical procedure,
however, is tedious, since it involves integration of a iirst-
order nonlinear nonhomogeneous ordinary ditlerential equa-
tion. Because a simpler method is available when the
surfnco is isothermal, no numerical integration procedure
will be presented herein detail. However, some integration
relations are stated in appendix B.

The second method, applicable when the surface tempera-
ture is constant (or, presumably, nearly constant), will be
termed the “linear method.” This method uses the nearly
linear shape of the curves of N against n for constant SW.
It directly corresponds to the procedure of Thwaites for
incompressible flow and to that of Rott and Crabtree for
compressible flow over insulated surfaces. The curve of
N against n for a given i% is asmgned represented by

12
I I I I I I I I I I I l.% ‘. I 1

I I I I I I I I I I

1,1

1,0

../

I I 1 1 1 1 1 !
:,3

I
1 1 1, , ,

5 Stqrntion-p31nt fkw

52’ . Axlswnrnetric dosed bxlv

,1
Tw-d!mepsprql ( ~ = 1~
1 1 I 1 I I 1 1 ‘1 AX 1

-. I

-,2

-, 3

‘%-2S<4+ 20J6J2-CJ8W 0D4JX.f2 .16 20
Correlot[on numiw, n

~~IQUIUJ 4.—~rrelation of dimeneionkss momentum equation.

iV=A+-Bn (31)

If equation (31) is inserted in equation (2s), a simple
linear tit-order equation results, which has for its solution

J
n=-AU;~ U,x x i7:-1 dX (32)

o

If equation (32) is transformed to physical quantities by
using Stewartson’s transformation, there results f or two-
dimensional flow

where K=~~~,—, L is any fixed length, and the dimension-

less pressure gra&nt P’ is given by

L% L dp8——
~,= dz p. dz L d~e— .— .—‘= TM:p,u: ‘ue dx

(34)

The left member of equation (33) has been arranged in a
form convenient for later use.

The determination of the coefficients A and B is as follows:
If the straight line (3 I.) is chosen to pass through the correct
value of N at zero pressure gradient (n= O), then A= 0.44
independent of S.. In this case, only B is affected by the
presence of heat transfer. Figure 5 shows the values of

16

!4

12

(t)t%Wa~ fW5W’ gradka’rt

Two-dimenskml-.. /
*mef& “’ ..

C&d My-.,
10

‘. .

B

8 /

( )(2) Smallwssure gradient, # -=
n=O \

6, /// / ,

4

2’ I 1 1 1 1 1 1 1 I I
-LO -.8 -5 -.4

Entha~~y func%n ot.2wl 1, S;
6 .8 Lo

FIGURE5.—Variation of B for uee in linear method of detwmining
correlation number.
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B(SJ for the following choices of matching conditions:
(1) The line (31) goes through the point corresponding to

i’?=O (u.=0) in order to match the conditions at a stagnation
point. Thus, for two-dimensional flow (iV=O), ~=
—0.44&.

(2) The line (31) coincid-- with the tangent to the N(n)
lines at n=O (small pressure gradients).

(3) The line (31) is selected to give gcod over-all agree-
ment for unfavorable pressure gradients.

If a better match with the curves of figure 4 is desired in
calculating n for c6rtain ranges of pressure gradient, a
tangent line to the curve of N aggst n may be chosen at a
desired value of n. For instamw, in considering the flow in
the vicinity of a two-dimensional stagnation point with
SW= — 0.8, the tangent line through N=O has the c.dicients
A= O.372, B=2.53. The value of B is quite sensitive to
the matching assumption, especially in the region Sm>O
(fig. 5). However, the final value of n(z) is somewhat in-
sensitive to the value of B, since the terms involving B in
equation (33) appear both inside and outside the integral in
a compensating manner. The accuracy of the method de-
creases, of course, in regions where the plots of figure 4 have
large curvature.

The calculation procedure is as follows: Values of A and B
are chosen for use in equation (33) either horn flgnre 5 or
from tangent-line considerations. The integration is then
performed by using a suitable integration rule and a proper
step size. It is recommended that the step size chosen be
as small as practicable in order to obtain results which are
reasonably smooth. In some cases (e. g., near the boundary-
layer origin) it may be advisable to perform the integration
by obtaining Taylor series expansions of the integrand in
the variable (z/Z). Then the integration can be carried
out in closed form, corresponding effectively to zero step
size.

There are two posible starting conditions in a boundary-
layer calculation: (a) that of a sharp edge, that is, 0= O,
n=O; or (b) the stagnation point, where U.= U.=0. In
using the linear method, the starting conditions are auto-
matically satisfied if the chosen line (31) goes through the
correct starting point N(n). Thus, if matching condition
(a) is used, both possible starting conditions can be satistied,
since the corresponding line (31 ) passes through the curve
from the react solutions at both n=O (N= 0.44) and, for
the tw-o-dimensions.l flow, at N=O (n,,= — 0.44/B). Values
of n for stagnation-point flow taken from figure 4 are shown
in figure 6.

The corresponding relations and procedure for axially
symmetric flow based on Mangler’s transformation (ref. 27)
nre presented in appendix C.

It is sometimes helpful to have an analytical esqnwsion
for the initial variation of correlation number as a check on
the numerical calculations. The initial variation of n with
x for the various starting conditions, as represented by the

. . dn
()‘emvahve a . . .

, is discussed in appentix D.

2
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Stagnation- point flaw
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/

-2 /

+LO -E -.6 -.4Ent-;y fum;ian ~;2wll J .6 .S L

,

FICJURH6.—Effeot of wall temperature on correlation nurnbor for
various prefxmregradlenta.

BOUNDARY-LAYER CHARACTERISTICS

Once the correlation number n is determined as w function
CIRem

of z, it is possible to obtain 1 and
( ).

~ ~ ~ from figures

2 and 3, respectively. Then, the local skin-friction coofficiont
and heat transfer are easily calculated from the following
relations, which apply to both two-dimensional and axinlly
symmetric flows:

and from equations (21) and (22), it follows that

It may be noted that, at a stagnation point, equation (35)
reduces to

(36)

Once c~ is determined, the heat transfer maybe calculated
horn curves of the Reynolds anaIogy parameter against corre-
lation number of figure 3, by using the relation

(3T
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In utilizing equations (35) to (37), it is useful to have the
initial values of the parameters. These values are listed in
table I.

The calculations thus far have been for Pr= 1.0. The
effect of Prandtl number on skin friction is small and is there-
fore usually neglected. It can be seen from table I that, for
stagnation-point flow, the maximum difference in the quan-

tity Cl~ReWbetween solutions for Pr= 1.0 and Pr=O.7 is
about 7 percent. With regard to heat transfer, Tiiford and
Chu (ref. 28) have found, from solutions with constant fluid
properties, that the effect of Prandtl number on heat transfer

m()can be accounted for by multiplying —
& R-1 by ‘Pr)a.

Using this approximation, equation (37) becomes

(38)-

Values of a suggested in reference 28 are as follows: For
small pressure gradients, a= ~; for large adverse pressure
gmdienta, a= X; and for extremely favorable gradients, a=%.

Squire (ref. 29) has indicated that a=O.4 is adequate for
stagnation-point flows. Recently obtained solutions (ref. 30)
of equations (16) of reference 12 for /3=1, Pr=O.7, and
M,+ co show that this type of correction may be adequate
for all compressible boundary-layer calcuhtions.

It should be noted that, in the detition of Numelt
number, the temperature difference in the denominator was
assumed to be (taW—tW). Since for Pr= 1 the recovery
temperature is to, the present calculations (based on those of
ref, 12) cm give no indication of the adiabatic wall tempera-
ture for Pr # 1. For a first approximation, it maybe reason-
able to calculate t=.by using a temperature recovery factor
of (Pr) 112. This is the well-known expression for recovery
factor for the we of high-speed flow with zero pressure
gradient. The adequacy of its application to high-speed
flows with large pressure gradients is not well established.

Tho physical momentum thickness is determined from

(39)

The displacement thickness ~“ maybe calculated by using
tho following simple exprewion for the ratio of displacement
thickness to momentum thickness:

H=;= H,,+T; MXH,,+l) (40)

In reference 23, this expression was derived for flows over
insulated surfaces with Pr= 1. Equation (40) is valid for
nonimndated surfaces as well. The dependence of H,, upon

wall temperature and n is presented in figure 7. Mth large

amounts of cooling in favorable-pressure-gradient flows, it is

seen that negative form factors (and hence negative dis-
placement thicknewes) result. This occum because the sur-
face cooling produces an increase in density near the wall, so

Carrelatim number, n

FIGURE 7.—Form-factir correlation.

that there is more mass flow per unit flow area within the
boundary layer than in the external flow.

The over-all thiclmem 6 of “a boundmy layer calctdated
from exact solutions is a quantity not uniquely defined. Its

value depends on the value of the velocity ratio $ that is
a

chosen to represent the outer edge of the boundary layer.
However, for a given value of the velocity ratio (legs than 1)
there is a single value for thickness. The ratio of this over-all
thiclmess to the momentum thickness is given by the expres-
sion

5 6,, y—l
-= — +—e 0’, 2

fi(Htr+l) (41)

The quantity ~ is that for low-speed flow (M’=0) which

has been evalua~ed from the solutions of reference 12 and is
presented in figure 8 as a function of correlation number n

for ~=0.995.

T~e mass flow in the boundary layer is related to the differ-
ence (&6*) and may be obtained by subtracting equation
(40) from equation (41), which finally results in

(42)
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The quantity, ~—Et, is 5.35 for the flat plate and, as can
[t

be seen from the information in figures 7 and 8, varies from
about 4.5 for adve~e pressure gradients to about 6.5 for
favorable pressure gradients.

LIMITS DUE TO AVAILABLE EXACT SOLUTIONS

Thecnrves of figures2 and3 are terminated at the boundaqy-
layer separation point on one end and at the value of the
correlation number n at the other end, which corresponds to
the most favorable pressure gradient that can be represented
by the Falkner31ian type solutions of referenm 12. How-
ever, one may conceive a flow that contains values of n more
neamtive than the latter limit. For example, if a boundary
layer is allowed to grow on a flat plate until the momentum
thickness has an arbitrary value and is then subjected to a
favoroble pressure gradient (utz>O), equation (22) shows
that n might be made arbitrarily negative. Similarly, large
negative values of n may arise if a strong favorable pressure
gradient is maintained for some distance along a surface,
such as in a nozzle. Under such circumstances it would be
necessary to extend the curves of figures 2, 3, and 7 in order
to use the correlation method presented herein. Such exten-
sion is not possible by means of Fallmer-Skan type solutions.

It is thus apparent that there are types of problems for
which the presently available correlations are not adequate.
To establish correlations in that regime would require exact
boundary-layer solutions for large favorable pressure gra-
dients of a form diiferent horn that of reference 12. Such
solutions are not known to the authors at this time. The

extended portions of the curves in figures 2, 3, and 7 for
&= – 0.8 were drawn to enable the completion of examplo
II in the following section. The adequacy of this rmdmnsion
is not known.

EXAMPLES

An important test of the method developed is the com-

parison of the final results for practical problems with tlm

findings of other theories or with experimental results.

L SUPERSONIC SURFACES

The linear method for determining the correlation number
n is applied to the calculation of skin friction and heat
transfer for the two supersonic surfaces at Mach number 3.o
calculated in reference 6. These surfaces are shown in
figure 9.

.05

f

o I
x/L

.05

f

o i
x IL

FIGURE f).~uperaonio surfaces of example I.

A comparison is made, in the following table, between the
results obtained by using the linear method and thoso ob-
tained by using Low’s perturbation method with Pr= 0.72
(ref. 6). The comparison is made for a hot wall, an insulntcd
wall, and a cold wall at x/L= 1 (see fig. 9). A value of a of
1/3 was used in these calculations.

Chadlerlt

Pavorable

I I I I I

Cold wdl (S.--0.9).. a%

I
0.079 0<271IrladatedwaL.._...

Hot wdl (S.-0.61) _-
.mO . ..?-?J...

1.ml
. .. . .. .. .

1.048 .31s I
.idverm-. GM wall (s.- –0.9) - 0. e45 cl W

?&lW?d wall ------- ;% .476 ..!.!!... ..!.?..
Hot wall (6.-O.43)_. .330 . !274 .m

A comparison of values indicates agreement of skin friction
within 2 percent in the case of a favorable pressure gradient.
For the adverse-pressure-gradient cases, reasonable agreement



coMPFmsmBLE LAMINAR BOUNDARY LAYER WITH EEAT TRANSFER AND ARBITRARY PRESSURE GRADIENT 967

is obtained for the cold wall, although for the insulated and
hot walls a large diilerence is obtained. This difference is
due essentially to the fact that, in the case of an adverse
pressure gradient, the solutions of Lmv (ref. 6), which re-
sanble the series-type solution of Howarth (ref. 25), depart
from Frdkner43kan type solutions such as that of Hartree
(ref. 26) (e. g., fig. 1). An important consideration for the
case of the heated surface with an adverse pressure gradient
is that the flow is closer to separation than appears perm&si-
blo for a theory based on small pressure gradients such as
that of reference 6; therefore, for this case the present calcu-
lation may be the more reliable. Some of the d.Herence b
the preceding table may also be a Pmndtl number effect.

Good agreement is also obtained for heat transfer except
for the case of the heated surface with favorable pressure
gradient. Some of that difference might also be a Prandtl
number effect.

n. .AXISYhfMETRIC CONVERGENT-DIVERGENT ROCKIW NOZZLE

The second example, that of a rocket nozzle, is one involv-

ing both large pressure gradients and heat transfer. The

nozzle chosen is illustrated in figure 10. It has a 25° half-

rmglo convergent section and a 15° half-angle divergent

section, The combustion-chamber stagnation pressure is

assumed to be 500 pounds per square inch absolute, the

stagnation temperature is taken as 4000° R, and the Prandti

number is assumed to be 0.78. The nozzle wall is assumed

cooled to a uniform temperature of 800° R, which corre-

sponds to I%= —0.% J?or the assumed 3-inch throat di-

‘“:* --.I

,/-Exact sduficm - stagnMc.n-~”nt flaw
# I

I 1 i
-Limiting value of n from

J exmf soluticms(* -0.8)
-, 2 \
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:- \ ,

>
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s -.4
/

=
=

\
1

$

/

/
-. 5

\

1

/

-.6

\ / !

Na~zte tfuaat

70-. I 2 3 4 5
Distance olong nozzle wall, x/L2

FzGr-rrm 10.—Variation of correlation number in rocket nozzle.

arneter, the rocket has a nominal thrust of 665o pounds for
~= 1.3. Local static conditions along the nozzle wall were
obtained using onedirnensional flow. relations.

The calculation was performed by the linear method with
A= O.372 and B=2.53. In order to eliminate the effect
of step size in the initial portion of the integration, a serie9
expansion of the intsgrand was used for OS (z/D) <0.5.
For (z/D) >0.5, the step size taken was 0.1. The resulting
variation of n in the nozzle is also shown in figure 10. It is
seen that, in a portion of the nozzle including the throat
(1.2< (@)<3.5),, values of n are obtained which require
use of an extended correlation curve as discussed earlier, in
order to calculate skin friction, heat tmmsfer, and displace-
ment thickness. N’o extrapolation is needed to obtain
momentum thicknees, since the momentum thickness is
related to n through equation (39).

The calculated local heat-transfer rates as weIl as displace-
ment and momentum &ickness are shown in figure 11. It
is seen that large rates of cooling are required in the neighbor-
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FIGURE 11.—R.aulte of rocket-nozzle calculation.
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hood of the stagnation point and the nozzle throat. If the
cooling were to become insuilicient, these seem to be the most
likely locations of faihire. The required local cooling rate
to maintain constant wall temperature decreases sharply
beyond the throat of the nozzle.

In the absence of more appropriate information, it has
been customary in recent years to use flat-plate heatAransfer
relations in estimating heat transfer in a nozzle. The use
of such a relation in the current problem (iVul~=O.305
for Pr=O.7S) yields values indicated in figure 10. It is
seen that for this problem the flat-plate relation seriously
underestimates the amount of cooling required over a large
part of the nozzle. This illustrates the importance of con-
sidering the effects of pressure gradient on heat transfer.

The momentum thickness is seen to reach a minimum
value at the nozzle throat. The displacement thickness
is a small positive quantity at the stagnation point but is
negative for most of the conve~ent section as well as in
tho vicinity of the throat} The over-all thic!iness (not
shown on the figure) variosfrom 6.1 to 7.7 times themomentmn
thickness iu going from the initial stagnation point to the
nozzle exit.

The use of diifemnt values of A and B in performing the
numerical integration would hwe apprcmimately the fol-

lowing effect: With the values A=O.44 and B=3.o (from
fig. 5),the momentum thickness would be about 10 percent

smaller in the ticinity of the throat than the values in tigure 11
and wouId be within 5 percent of the presented values over
the rest of the nozzle. With A= O.335 and B=2.34, the
momentum thickness at the throat would be about 6 percent
larger than the value presented. The effects of varying

tThis nnnsaal result produces the Inkesting p@lhfflty that, for a nxket nozzle with

mokd walls and visdd flow, a mam diwbrge crceflident kwxl on Uux=3t area, -Y

nssuml to h km tlmn I becanw of lmmdary4am ‘%loehge” at tne thi-m~ maY adndly

cxaed L A dlstlnctkm exists MxeeiI U& phenomemm and that of ~tlve momenhun

~CbKS9 (t’d& 1,10, and M) 13sJ@3ted wltb vek!ity overdwt.

A and B on skin friction and heat transfer would bo less
than 3 percent at the throat.

CONCLUDING REMARKS

The application of Stewartson’s transformation to tho
compressible laminar-boundmy-layer equations with heat
transfer yielded a simple first-order system of ordinary
differential equations, the iirst of which is very similar to
the Khrmfm momentum integral. Dimensionless shear and
heahtransfer parameters were defined. The assumption of
correlation of these paramete~ in terms of a momentum
parameter restited in a complete system of relations for
calculating skin friction and heat transfer. Knowledge of
velocity or temperature profiles is not necessary in using
this calculation method. Procedures for the calcuhttion
of the longitudinal distribution of correlation number are
presented, which include as special cases the method of
Thvaites and that of Rott and Crabtree. The dimensionless
parameters introduced herein were evaluated from L11Oexac~
solutions of reference 12.

Calculations of an example involving small prossuro
gradients have shown reasonable agreement between this
method and the perturbation method of reference 6 over
the same range of lNfach number, pressure gradient, rmd
heat transfer.

The method is also applied to the calculation of heat
transfer and displacement thickness in a highly cooled,
convergent-divergent, axially symmetric rocket nozzle. The
results of this calculation show that high rates of heat trcmsfor
are obtained at the initial stagnation point and nt the throat
of the nozzle. Also indicated are negative displacement
thicknesses in the convergent portion of the nozzle; tlmso
occur because of the high density within the lower portions
of the cooled boundary layer.
LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COM.MMWTEE FOFt AERONAUTICS

CLEVELAND, Oreo, ~ebrua~ 1, 196fi
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SYMBOLS

constant from N=A+Bn
sonic velocity
constant from iV=A+Bn

local skin-frktion coefficient, C#j%:

speciiic heat at constant pressure
nozzle-throat diameter

J

‘#Tn
convection thiclmew, .73=

, u.

form factor, H=6*/o

pbysicnl form factor for Me = O,Hti=~
:r

enthalpy
37–1

2(7’-1)

thermal conductivity

Sutherland’s constant
arbitrary length

(7

9,, a
dimensionless shear parameter, 1= ~ ~

e m

Mach number
exponent from l?alkner&an external velocity distri-

bution U6=OX”
momentum parameter, N=2[n(H,,+2) +Zl

at
()

x—
%Nusselt number, Nu=ww

am w
Uaxq,

correlation number, n= ——
Vo

L dpe——
P. f-b

dimensionless pressure gradient, P’=m

static presmre
radius of ~etric body

Reynolds number, Rem=%

[9(91.
heat-transfer parameter, r=n$ ~ ~ ~c

enthalpy function, i3=k-1
ha

static temperature

adiabatic ivall temperature

transformed longitudinal velocity, U=u~+=

longitudinal velocity component
transformed normal velocity, V= —+=
normal velocity component

transformed coordinate along surface, X=
J

=Alhhh

0 poall
coordinate along surface

transformed normal coordina~, Y=~
J

‘~dy
mopo

normal coordinate
exponent of Prandtl number in Reynolds analogy

parameter

pressuregradient parameter, 19=m--

ratio of specific heats
over-all thiclmess
displacement thicknms
momentum thickness

‘=W=(-)&
dynamic viscosity

kinematic viscosity, v=.ujp

mass density

h
shear stress, T= M—

%
stream function, eq. (6)

Subscripts:

e local flow outside boundary layer (external)

8 local stagnation value

8p stagnation point

tr associate{ transformed quantity

w w-all or surface value

o free-stream stagnation value

1 initial value

A coordinate used as subscript denotes differentiation
with respect to the coordinate.
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APPENDIX B

NUMERICAL INTEGRATION METHOD

MEi’HOD

The most direct method of solving equation (28) is by
numerical integration, using the calculated curves of .N(n,SJ
for determination of the right member.

h integration procedure may be simply indicated by
direct integration of equation (28). The resultant ht~l
equation can be written:
For two-dimensional flow,

(M)

For an axially symmetric closed body, through Mangler’s
transformation (ref. 26),

u ez x NR2——
s

—a‘Poue
(132a)

Since the iutegrands contain N(n), which is unknown at
this point, no simple evaluation is possible. In fact, these
equations are actually only a condensed notation of the pro-
cedure to be followed. The integration must be carried out
piecemeal, alternating with determination of the left member
of the equation and iterating for accuracy.

The necessity of working with the transformed coordinates
can be eliminated by considering the Stewartson trans-
formation from _Uato u.. For emrnple, in physical coordi-
nates equation (132a) becomes

where L is any Exed length, and &e dimensionless pressure
gnidient P’ is given by

(333)

Similarly, if the isentropic relation pjp’=constant is used

in equations (31)
mation is applied,

A13RONAUTICS

and (32)and if the Stewartson transfor-
there results:

For two-dimensional flow,

{

()i=+= f:(zj=-[~]p,;
●

For an axially symmetric flow (closed body),

();~R2d ;

n 0sM, t“ K_= —.
p,; R’ L o“M+”

● 6

(134)

(EM)

where K=-.

INITIALVALUES

When the numerical intqqration method is used, cortnin
considerations are necessary in order to start tlm SOIULion
properly. There are ttio possible starting conditions:

(1) sharp edge or pointed body, where 8=0 and n=Ct, and

(2) stagnation point, where U.= U.=0.
In the caseof a boundary layer starting from o stagnotion

point, the initial value nl of n is determined from tho condi-
tion U.= O, U_=constant in equation (28). For two-
dimensional stagnation-point flow, the Hartree pressure-
gradient parameter 19is equal to 1.0. Since, for tho Falknor-

2(JII-1)
Skan type flow considered, N=~ n, it is men thaL

N=o at a two-dimensional stagnation point. This fixes n
at the values shown in figure 6,which were obtained from
figure 4. For ~e~c st~ation-po~t flo~v over ~
closed body, P=% (ref. 31), so that N1= —2nl. The values of
nl for axially symmetric stagnation-point flow over o closed
body as obtained from figure 4 are also shown in figure 6.
For the stagnation-point flow over the blunt lip of an open
axisymmetric body, n,P can be shown to have tlm two-
dimensional value.
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APPENDIX c
LINEAR METHOD FOR AXISYMMETRIC FLOW

I’or axisymmetric flows, the following equation, which is

equiwdont to equation (33), is obtained by application of the

transformation of Mangler (ref. 27):

where R=R (z) is the radius of the body at station x, I

K==, rmd
2(7–1)

P’=&L

In evaluating the coefficients A and

iV=A+Bn

B of the straight line

(31)

A maybe chosen as 0.44 so that the line (31) passes through
the correct value of N at n=O. The choice of B may be
made so that the line (31) goes through the point where
N= –2n in order to match the conditions at an axisymmetxk

stagnation point. In that event, B= –
(%’+$” ‘or

achievingbetter agreement with the curves of figure 3 in
certain ranges of pressure gradient, a tangent line to the
curve of N against n may be chosen as was indicated for

two-dimensional flow-.
The three possible starting conditions are: (1) For a

pointed body, 9=0, n=O. (2) For a stagnation point on a

closed body, U.=u~=O so that N= —2n. Values of n,P for
this axisymmetric stagnation point are shown in figure 5 and

indicated in table II for d=%. (3) For a stagnation point
on the blunt lip of an open ~e~c body, it can be
shown using the afiymmetric form of equation (28) that
N=O so that no is that for two-dimensional flow.

APPENDIX D

INITIAL VARIATION OF CORRELATION NUMBER

It is sometimes helpful to have an analytical expression for
the initial variation of correlation number as a check on
the numerical calculations. The following expressions for

dn
()
~ . ~are determined fkom equation (28):

.

TWO-DIMENSIONAL FLOW

Sharp edge: .

Z ..0=-’’’G0(2)Z20Z.0dn
()

(Dl)

Stagnation point (blunt body):

dn
()

%

()

%Z
z .mo=

r“)
< ‘p (D2)

1+ z *P

AXISYMMEITUC FLOW

For axisymmetric flow the initial derivatives must be
evaluated from the following equation:

Ue d nR =Ncn,~W)

(3
—— .

R’ dX U,
(D3)

Closed body.—
Pointed nose:

dn
()z . . .‘-0147G5=.o(2)..o

Stagnation point (blunt nose):

Open body.—
Sharp lip:

z ..o=-o’’~)=.o(:)z.o
dn

()

Stagnation point (blunt lip):

($9z.o=,+& [Fi-2(%Ll
8P

(334)

(D5)

(D6)

(D7)
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